<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
</table>
| 1 | Angle $BAC = 76^\circ$
Angle $BAP = 180^\circ - 90^\circ - 54^\circ = 36^\circ$
x = $76^\circ - 36^\circ$
OR
Angle $QCD = 54^\circ$
Angle $ACP = 180^\circ - 76^\circ - 54^\circ = 50^\circ$
x = $180^\circ - 90^\circ - 50^\circ$ | 40° | 4 | B1 for Angle $BAC = 76^\circ$ (could be just on the diagram)
M1 for $76^\circ - (\text{"180}^\circ - 90^\circ - 54^\circ\text{"})$
A1 for $x = 40^\circ$ (explicitly stated)
C1 (dep on M1) for ‘the sum of the angles of a triangle is 180°’
and ‘alternating angles on parallel lines are equal’
OR
B1 for Angle $QCD = 54^\circ$ (could be just on the diagram)
M1 for $180^\circ - 90^\circ - (\text{"180}^\circ - 76^\circ - 54^\circ\text{"})$
A1 for $x = 40^\circ$ (explicitly stated)
C1 (dep on M1) for ‘corresponding angles on parallel lines are equal’
and ‘sum of the angles on a straight line is 180°’ and
‘the sum of the angles of a triangle is 180°’
or ‘corresponding angles on parallel lines are equal’ and
‘exterior angle of a triangle is equal to the sum of the two
interior opposite angles’
OR
M1 for angle $QCB = 180^\circ - 54^\circ (=126)$
M1 for $180^\circ - 90^\circ - \text{"126} - 76^\circ\text{"}$
A1 for $x = 40^\circ$ (explicitly stated)
C1 (dep on M1) for ‘sum of allied angles = 180°’ and ‘the sum of the angles of a triangle is 180°’ |
<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>25 50 75 100 125 150 175 35 70 105 140 175</td>
<td>10.96</td>
<td>5</td>
<td>M1 for attempt to find the LCM of 25 and 35 eg at least 3 correct multiples of 25 and at least 3 correct multiples of 35 or 2 factor trees with at least one correct A1 for 175 M1 for at least one of (\frac{175}{25}) or “5” or (\frac{175}{35}) or “7” or 5.50 or 5.46 either unassociated or associated with the correct pack. M1 for “5” (\times) £1.10 + “7” (\times) 78p A1 cao. OR M2 for attempt to find the number of packs of cups and plates eg sight of 5 ((\times) 35) or 7 ((\times) 25) A1 for 5 ((\times) 35) and 7 ((\times) 25) M1 for 5 (\times) £1.10 + 7 (\times) 78p A1 cao</td>
</tr>
<tr>
<td>Question</td>
<td>Working</td>
<td>Answer</td>
<td>Mark</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>------------------</td>
<td>-------------</td>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>3 (a)</td>
<td></td>
<td>$\frac{5}{14}$</td>
<td>1</td>
<td>B1 for $\frac{5}{14}$ oe fraction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>54</td>
<td>3</td>
<td>M1 for $84 \div (5 + 9)$ (= 6) or 1 – “(a)” (=)</td>
</tr>
<tr>
<td>3 (b)</td>
<td></td>
<td>54</td>
<td>3</td>
<td>M1 for $84 \div (5 + 9) \times 9$ oe or</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A1 cao</td>
</tr>
<tr>
<td>3 (c)</td>
<td></td>
<td>e.g. 6 green</td>
<td>3</td>
<td>M1 for correct method to find twice as many green beads as red beads, e.g. 2×30 (= 60) or $2 \times (84 – “54”)$ or “54” + “6” (= 60)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A1 for 6 (green) OR if n reds are added then $2n + 6$ (greens), where n and $2n$ could be numbers OR 30 (red) and 60 (green)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C1 (dep on M1) for showing correct relevant working and clear conclusion stating number of green beads or stating total numbers of red beads and green beads</td>
</tr>
<tr>
<td>4</td>
<td>$\frac{48.45}{425} \times 100$</td>
<td>Katie spends more</td>
<td>3</td>
<td>M1 for $\frac{48.45}{425} \times 100$</td>
</tr>
<tr>
<td></td>
<td>$\frac{11}{100} \times 425 = 46.75$</td>
<td></td>
<td></td>
<td>A1 for 11.4</td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td></td>
<td></td>
<td>C1 (dep on M1) for conclusion ft from comparison of two percentages</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M1 for $\frac{11}{100} \times 425$ or for 10% = 42.5(0), 1% = 4.25,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>42.5(0) + 4.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A1 for 46.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C1 (dep on M1) for correct ft from comparison of “46.75” and 48.45</td>
</tr>
<tr>
<td>Question</td>
<td>Working</td>
<td>Answer</td>
<td>Mark</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>--------</td>
<td>------</td>
<td>-------</td>
</tr>
</tbody>
</table>
| 5 | Jan x
 Feb $2x$
 Mar $2x + 10$
 Apr $\frac{1}{2}(2x + 10)$
 $x + 2x + 2x + 10 + \frac{1}{2}(2x + 10) > 123$
 $6x + 15 \geq 123$ | 18 | 5 | M1 for a method to express all 4 months’ amounts algebraically (at least 3 correct, ft)
 M1 for an expression for total with at least 3 correct terms added
 M1 for a correct inequality stated algebraically
 M1 for an inequality reduced to $ax > b - c$
 A1 cao
 NB: accept inequalities written as equations
 SC T&I is 5 marks for 18, otherwise 0 marks |
<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
</table>
| 6 | \[
\frac{1}{2} \times \pi \times 10^2 - \pi \times 5^2
\]
\[
= \frac{2}{12.5\pi}
\] | 39.3 | 5 | M1 for \(\pi \times 5^2 (= 78.5(39\ldots))\) or \(\pi \times 10^2 (= 314(.159\ldots))\) or \(100\pi\) or \(25\pi\)
M1 for \(\frac{1}{2} \times \pi \times 10^2 (= 157(.07\ldots))\) or \(50\pi\)
M1 (dep on at least one of the previous Ms) for
\[
\frac{1}{2} \times \pi \times 10^2 - \pi \times 5^2
\]
M1 (dep on previous M) for \((\frac{1}{2} \times \pi \times 10^2 - \pi \times 5^2) \div 2\) or

\[
\frac{157.07\ldots - 78.53\ldots}{2}
\] \(= 25\pi/2\)
A1 for answer in range 39.2 – 39.3
OR
M1 for \(\pi \times 5^2 (= 78.5(39\ldots))\) or \(\pi \times 10^2 (= 314(.159\ldots))\) or \(100\pi\) or \(25\pi\)
M1 for \(\frac{1}{4} \times \pi \times 10^2 (= 78.5(398\ldots))\) or \(25\pi\)
M1 for \(\frac{1}{2} \times \pi \times 5^2 (= 39.2(69\ldots))\) or \(12.5\pi\)
M1 (dep on 2 previous Ms) for ’78.5′ – ’39.2′
A1 for answer in range 39.2 – 39.3
<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>explanation</td>
<td></td>
<td>1</td>
<td>C1 for “he has not expanded the brackets correctly” oe</td>
</tr>
<tr>
<td>8</td>
<td>(a) 5000 × 1.028⁴</td>
<td>5583.96</td>
<td>3</td>
<td>M1 1 + 0.028oe or 5000 × 0.028 M1 5000 × 1.028⁴ oe or a complete method for compound interest year on year A1 cao</td>
</tr>
<tr>
<td></td>
<td>(b) 12000×1.02×1.035×1.05</td>
<td>£13301.82</td>
<td>5</td>
<td>M1 12000 × 1.02 × 1.035 × 1.05 oe or a complete method not using a multiplier A1 cao M1 (\frac{13301.82}{12000}) or 1.108485 M1 ((\sqrt[3]{\frac{13301.82}{12000}}-1) \times 100) A1 cao OR M1 1.02×1.035×1.05 or 1.108485 seen M1 ((\sqrt[3]{1.02} \times 1.035 \times 1.05-1)\times100) A1 cao</td>
</tr>
</tbody>
</table>
1MA1 Practice Tests Set 1: Paper 3H (Regular) mark scheme – Version 1.0

<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 (a)</td>
<td>((3x + 2)(2x + 1) = 100) (6x^2 + 4x + 3x + 2 = 100)</td>
<td>(6x^2 + 7x - 98 = 0)</td>
<td>2</td>
<td>M1 ((3x + 2)(2x + 1) = 100) or ((2x \times 3x) + 2(2x + 1) + 3x = 100) oe or ((2x \times 3x) + (2 \times 2x (\times 1)) + 1 + 3x + 1 + 1 = 100) oe Other partitions are acceptable but partitioning must go on to form a correct equation. A1 Accept (6x^2 + 7x + 2 = 100) if M1 awarded</td>
</tr>
<tr>
<td>9 (b)</td>
<td>((3x + 14)(2x - 7) (= 0)) (x = 3.5) ((\text{Area } =) 6 \times \text{“3.5”}^2) or ((3 \times \text{“3.5”}) \times (2 \times \text{“3.5”}))</td>
<td>(73.5)</td>
<td>5</td>
<td>M2 for ((3x + 14)(2x - 7) (= 0)) or ((x =) \frac{-7 \pm \sqrt{49 + 2352}}{12}) or ((x =) \frac{-7 \pm \sqrt{2401}}{12}) If not M2 then M1 for ((3x \pm 14)(2x \pm 7)) or ((x =) \frac{-7 \pm \sqrt{7^2 - 4 \times 6 \times -98}}{2 \times 6}) condone + in place of ± and 1 sign error. A1 Dependent on at least M1 Ignore negative root. M1ft Dependent on at least M1 and (x > 0) A1 cao Dependent on first M1</td>
</tr>
<tr>
<td>Question</td>
<td>Working</td>
<td>Answer</td>
<td>Mark</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>---------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>10</td>
<td>(a)</td>
<td>3, − 6, − 5</td>
<td>2</td>
<td>B2 cao for all 3 (B1 for any 1 or 2 correct)</td>
</tr>
<tr>
<td></td>
<td>(b)</td>
<td>Quadratic graph</td>
<td>2</td>
<td>B2 for a fully correct graph OR B1 for all 7 points ft on (a) plotted correctly ± 1 sq B1 for a smooth curve through all 7 of their plotted points depending on at least B1 in (a)</td>
</tr>
<tr>
<td></td>
<td>(c)</td>
<td>Draw $y = -3$</td>
<td>0.3, 3.7</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>132.88 ÷ 88100</td>
<td>151</td>
<td>3</td>
<td>M1 for recognising that 88% is equivalent to 132.88 M1 for $132.88 \div 88 \times 100$ oe A1 cao</td>
</tr>
<tr>
<td>Question</td>
<td>Working</td>
<td>Answer</td>
<td>Mark</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>--------</td>
<td>------</td>
<td>-------</td>
</tr>
</tbody>
</table>
| 12 | \(DC^2 = 5^2 + 8^2;\)
\(DC = \sqrt{89}\)
\(DB^2 = 5^2 + 10^2;\)
\(DB = \sqrt{125}\)
\(BC^2 = 8^2 + 10^2;\)
\(BC = \sqrt{164}\)
\(\cos CDB = \frac{89 + 125 - 164}{2 \times \sqrt{89} \times \sqrt{125}}\)
\(= 0.23702\) | 76.3 | 6 | M1 \((DC^2 =) 5^2 + 8^2\) or \(DC = \sqrt{89} = 9.4\)
M1 \((DB^2 =) 5^2 + 10^2\) or \(DB = \sqrt{125} = 11.1\)
M1 \((BC^2 =) 8^2 + 10^2\) or \(BC = \sqrt{164} = 12.8\)
M2 \(\cos CDB = \frac{89 + 125 - 164}{2 \times \sqrt{89} \times \sqrt{125}}\)
A1 76.2–76.3
OR
M1 correct sub into cosine rule on formula sheet
\(\sqrt{164}^2 = \sqrt{89}^2 + \sqrt{125}^2 - 2 \times \sqrt{89} \times \sqrt{125} \times \cos x\)
M1 correct rearrangement to \(\cos CDB = \frac{89 + 125 - 164}{2 \times \sqrt{89} \times \sqrt{125}}\)
A1 76.2–76.3 |
<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>$4(x + 4) = 4x + 16\ \ \ \ \ \ \ \ 4(3x + 4) = 12x + 16\ \ \ \ \ \ \ \ 4x + 16 = \frac{2}{3}(12x + 16)\ \ \ \ \ \ \ \ 12x + 48 = 24x + 32\ \ \ \ \ \ \ \ 12x = 16$</td>
<td>$5\frac{1}{3}$</td>
<td>5</td>
<td>M1 for a correct expression for at least one perimeter. M1 for “$4x + 16$” $= \frac{2}{3}“(12x + 16)”$ oe M1 for $12x + 48 = 24x + 32$ or $4x + 16 = 8x + \frac{32}{3}$ oe A1 for $\frac{4}{3}$ B1 ft for “$\frac{4}{3}$” + 4 OR M2 for $x + 4 = \frac{2}{3}(3x + 4)$ M1 for $3x + 12 = 6x + 8$ or $x + 4 = x + \frac{8}{3}$ oe A1 for $\frac{4}{3}$ B1 ft for “$\frac{4}{3}$” + 4 T&I B4 for 5.33 or better</td>
</tr>
<tr>
<td>Question</td>
<td>Working</td>
<td>Answer</td>
<td>Mark</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>--------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>14</td>
<td>$\frac{12}{20} \times \frac{11}{19} + \frac{5}{20} \times \frac{4}{19} + \frac{3}{20} \times \frac{2}{19}$</td>
<td>$\frac{222}{380}$</td>
<td>4</td>
<td>B1 for $\frac{12}{19}$ or $\frac{5}{19}$ or $\frac{3}{19}$ (could be seen in working or on a tree diagram) M1 for $\frac{12}{20} \times \frac{5}{19} + \frac{3}{20} \times \frac{3}{19} + \frac{4}{20} \times \frac{2}{19}$ or $\frac{5}{20} \times \frac{3}{19} + \frac{12}{20} \times \frac{5}{19} + \frac{12}{20} \times \frac{3}{19}$ M1 for $\frac{12}{20} \times \frac{8}{19} \times \frac{15}{20} \times \frac{3}{19}$ or $\frac{5}{20} \times \frac{15}{20} \times \frac{3}{19}$ or $\frac{3}{20} \times \frac{17}{19}$ M1 for $\frac{12}{20} \times \frac{8}{19} + \frac{5}{20} \times \frac{15}{20} + \frac{3}{20} \times \frac{17}{19}$ A1 for $\frac{222}{380}$ oe or 0.58(421...) OR B1 for $\frac{8}{19}$ or $\frac{15}{19}$ or $\frac{17}{19}$ M1 for $\frac{12}{20} \times \frac{8}{19}$ or $\frac{5}{20} \times \frac{15}{20}$ or $\frac{3}{20} \times \frac{17}{19}$ M1 for $\frac{12}{20} \times \frac{8}{19} + \frac{5}{20} \times \frac{15}{20} + \frac{3}{20} \times \frac{17}{19}$ A1 for $\frac{222}{380}$ oe or 0.58(421...) OR (continued overleaf…)</td>
</tr>
<tr>
<td>Question</td>
<td>Working</td>
<td>Answer</td>
<td>Mark</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>--------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>14 (con)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B1 for \(\frac{11}{19} \) or \(\frac{4}{19} \) or \(\frac{2}{19} \)

M1 for \(\frac{12}{20} \times \frac{11}{19} \) or \(\frac{5}{20} \times \frac{4}{19} \) or \(\frac{3}{20} \times \frac{2}{19} \)

M1 for \(1 - \left(\frac{12}{20} \times \frac{11}{19} + \frac{5}{20} \times \frac{4}{19} + \frac{3}{20} \times \frac{2}{19} \right) \)

A1 for \(\frac{222}{380} \) oe or 0.58(421...)

NB if decimals used they must be correct to at least 2 decimal places

SC : with replacement

B2 for \(\frac{111}{200} \) oe

OR
e.g.
B0

M1 for \(\frac{12}{20} \times \frac{8}{20} \) or \(\frac{5}{20} \times \frac{15}{20} \) or \(\frac{3}{20} \times \frac{17}{20} \)

M1 for \(\frac{12}{20} \times \frac{8}{20} + \frac{5}{20} \times \frac{15}{20} + \frac{3}{20} \times \frac{17}{20} \)

A0
<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
</table>
| 15 | \(\frac{1}{2} \cdot x^2 \cdot \sin 60 = 36 \)
\(x^2 = \frac{72}{\sin 60} = 83.13 \ldots \) | 9.12 | 3 | M1 \(\frac{1}{2} \cdot x^2 \cdot \sin 60(= 36) \) or \(\frac{1}{2} \cdot ab \cdot \sin 60(= 36) \)
Or \(\frac{1}{2} \cdot x \cdot \sqrt{x^2 \left(\frac{x}{2}\right)} \) \((= 36) \)
M1 \(x^2 = \frac{72}{\sin 60} \) or \(ab = \frac{72}{\sin 60} \) or \(x^2 = \frac{36 \times 2}{\sqrt{0.75}} \)
A1 9.11 – 9.12 |
| *16 | \((2n + 1)(2m + 1)\)
\(= 4nm + 2n + 2m + 1\)
\(= 2(2nm + n + m) + 1\) | Proof | 3 | M1 for \(2n + 1 \) oe used to describe an odd number
A1 for product = \(4nm + 2n + 2m + 1 \) where \(n \) is not the same as \(m \)
C1 (dep on M1) for stating that \(2 \times \left(2nm + n + m\right) \) is even since it is a multiple of 2 so adding 1 gives an odd number |
<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>20 + 15 + 7.5 + 3.5 + 1 & 20 + 1.5 (20 + 10) + 1/2 (10 + 5) + 1/2 (5 + 2) + 1/2 × 2 (e.g.)</td>
<td>46 - 48</td>
<td>3</td>
<td>M1 for splitting curve appropriately to find area M1 for complete area calculation</td>
</tr>
<tr>
<td></td>
<td>overestimate with reason</td>
<td></td>
<td>1</td>
<td>A1 for answer in range 46 – 48</td>
</tr>
<tr>
<td>(b)</td>
<td></td>
<td></td>
<td></td>
<td>C1 for overestimate and appropriate reason linked to method, e.g. area between trapeziums and curve is also included</td>
</tr>
<tr>
<td>18</td>
<td>15 ÷ 70 = 120 ÷ n</td>
<td>560</td>
<td>4</td>
<td>M2 120 ÷ 70/15 or 120 × 4.66… or 8 × 70 or 15/70 × 8/8 = 120/15 ÷ 120 or 120 ÷ 21.4 × 100 (M1 for oe or 21.4% seen or 120 ÷ 15 (= 8) or 15/120 (= 1/8) or 4.66(…) seen)</td>
</tr>
<tr>
<td></td>
<td>120 × 70 ÷ 15</td>
<td></td>
<td></td>
<td>A1 560 cao</td>
</tr>
<tr>
<td></td>
<td>8 × 70</td>
<td></td>
<td></td>
<td>C1 for a correct mathematical assumption eg population hasn’t changed overnight or sample is random, etc.</td>
</tr>
<tr>
<td></td>
<td>15 × 8/8 = 120/15 ÷ n</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OR 120 ÷ 21.4 × 100</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
National performance data from Results Plus

<table>
<thead>
<tr>
<th>Qu</th>
<th>Spec</th>
<th>Paper</th>
<th>Session</th>
<th>Qu</th>
<th>Topic</th>
<th>Max score</th>
<th>Mean % all</th>
<th>Mean</th>
<th>ALL</th>
<th>A*</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5MM2</td>
<td>2F</td>
<td>1306</td>
<td>Q23</td>
<td>Angles</td>
<td>4</td>
<td>15</td>
<td>0.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5AM1</td>
<td>1H</td>
<td>1111</td>
<td>Q16</td>
<td>Money calculations</td>
<td>5</td>
<td>76</td>
<td>3.80</td>
<td>5.00</td>
<td>4.43</td>
<td>4.23</td>
<td>3.18</td>
<td>2.57</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5MM2</td>
<td>2H</td>
<td>1311</td>
<td>Q12</td>
<td>Probability</td>
<td>7</td>
<td>74</td>
<td>5.21</td>
<td>6.57</td>
<td>6.35</td>
<td>5.85</td>
<td>4.96</td>
<td>2.53</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5AM1</td>
<td>1H</td>
<td>1111</td>
<td>Q07</td>
<td>Percentages</td>
<td>3</td>
<td>67</td>
<td>2.02</td>
<td>3.00</td>
<td>3.00</td>
<td>2.20</td>
<td>1.27</td>
<td>0.43</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5AM2</td>
<td>2H</td>
<td>1411</td>
<td>Q12</td>
<td>Solve inequalities</td>
<td>5</td>
<td>66</td>
<td>3.30</td>
<td>5.00</td>
<td>4.50</td>
<td>4.25</td>
<td>2.71</td>
<td>1.79</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5MM2</td>
<td>2H</td>
<td>1111</td>
<td>Q12</td>
<td>Area of a circle</td>
<td>5</td>
<td>61</td>
<td>3.06</td>
<td>4.88</td>
<td>4.64</td>
<td>3.96</td>
<td>2.07</td>
<td>0.60</td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>NEW</td>
<td></td>
<td></td>
<td></td>
<td>Solving linear equations</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8a</td>
<td>5AM1</td>
<td>1H</td>
<td>1206</td>
<td>Q16a</td>
<td>Compound interest</td>
<td>3</td>
<td>71</td>
<td>2.13</td>
<td>2.96</td>
<td>2.82</td>
<td>2.35</td>
<td>1.36</td>
<td>0.59</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>8b</td>
<td>5AM1</td>
<td>1H</td>
<td>1206</td>
<td>Q16bi</td>
<td>Compound interest</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>4MA0</td>
<td>2H</td>
<td>1401</td>
<td>Q18</td>
<td>Solve quadratic equations</td>
<td>7</td>
<td>49</td>
<td>3.46</td>
<td>6.31</td>
<td>4.20</td>
<td>2.00</td>
<td>0.45</td>
<td>0.14</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2540</td>
<td>2F</td>
<td>811</td>
<td>Q28</td>
<td>Graphs of quadratic equations</td>
<td>6</td>
<td>20</td>
<td>1.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1380</td>
<td>2H</td>
<td>911</td>
<td>Q21</td>
<td>Reverse percentages</td>
<td>3</td>
<td>29</td>
<td>0.88</td>
<td>2.79</td>
<td>1.99</td>
<td>1.00</td>
<td>0.29</td>
<td>0.07</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1387</td>
<td>6H</td>
<td>711</td>
<td>Q25</td>
<td>Pythagoras in 3D</td>
<td>6</td>
<td>28</td>
<td>1.65</td>
<td>4.35</td>
<td>2.12</td>
<td>0.79</td>
<td>0.16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>5AM1</td>
<td>1H</td>
<td>1111</td>
<td>Q14</td>
<td>Solve linear equations</td>
<td>5</td>
<td>25</td>
<td>1.25</td>
<td>4.83</td>
<td>1.43</td>
<td>0.70</td>
<td>0.36</td>
<td>0.57</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1MA0</td>
<td>2H</td>
<td>1206</td>
<td>Q25</td>
<td>Ratio</td>
<td>4</td>
<td>24</td>
<td>0.96</td>
<td>3.52</td>
<td>2.34</td>
<td>0.86</td>
<td>0.16</td>
<td>0.02</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1387</td>
<td>6H</td>
<td>711</td>
<td>Q21</td>
<td>Trigonometry</td>
<td>3</td>
<td>22</td>
<td>0.65</td>
<td>2.15</td>
<td>0.75</td>
<td>0.16</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>5MM2</td>
<td>2H</td>
<td>1306</td>
<td>Q23</td>
<td>Algebraic proof</td>
<td>3</td>
<td>15</td>
<td>0.44</td>
<td>1.67</td>
<td>0.64</td>
<td>0.23</td>
<td>0.04</td>
<td>0.01</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>5AM2</td>
<td>2H</td>
<td>1506</td>
<td>Q20</td>
<td>Area under a graph</td>
<td>4</td>
<td>41</td>
<td>1.23</td>
<td>2.60</td>
<td>1.97</td>
<td>1.03</td>
<td>0.34</td>
<td>0.11</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>2MB01</td>
<td>1H</td>
<td>1111</td>
<td>Q14</td>
<td>Estimating populations</td>
<td>4</td>
<td>15</td>
<td>0.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1MA1 practice test paper 3H (Set 1) mark scheme: Version 1.0